THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

$\begin{array}{c} \text{MATH 2055 Tutorial 4 (Oct 7)} \\ {}_{Ng Wing Kit} \end{array}$

- 1. Write down the negations of the following statements.
 - (a) $\forall \epsilon > 0, \exists N \text{ such that } \forall n > N, |x_n x| < \epsilon$

Solution: $\exists \epsilon > 0$, such that $\forall N_0, \exists n > N_0, |x_n - x| > \epsilon$

(b) $\exists N$, such that $\forall n > N, \forall \epsilon > 0, |x_n - x| < \epsilon$

Solution: $\forall N_0, \exists n > N_0, \exists \epsilon > 0, |x_n - x| > \epsilon$

(c) $\forall M, \exists N$, such that $\forall n > N, |x_n - x| > M$

Solution: $\exists M, \forall N_0, \exists n > N_0, |x_n - x| < M$

2. For a pair of positive numbers a and b, define sequences a_n and b_n respectively as

$$a_1 = a, \qquad b_1 = b$$
$$a_{n+1} = \frac{a_n + b_n}{2} \qquad b_{n+1} = \sqrt{a_n b_n}$$

Prove that $a_n \ge a_{n+1} \ge b_{n+1} \ge b_n$ for $n \ge 2$, and they have the same limit.

Solution:

$$\forall \alpha, \beta \in \mathbb{R}^+,$$

 $(\sqrt{\alpha} + \sqrt{\beta})^2 \ge 0 \Longrightarrow (\alpha + \beta)/2 \ge \sqrt{\alpha\beta}$
 $\therefore \forall n \ge 2, a_n \ge b_n$

$$b_{n+1} - b_n = \sqrt{a_n b_n} - b_n = \frac{b_n (a_n - b_n)}{\sqrt{a_n b_n} + b_n} \ge 0$$
$$a_n - a_{n+1} = a_n - \frac{a_n + b_n}{2} = \frac{a_n - b_n}{2} \ge 0$$

 $\therefore \{a_n\}_{n\geq 2}$ is decreasing and bounded below by b_2 and $\{b_n\}_{n\geq 2}$ is increasing and bounded above by a_2

 $\therefore \{a_n\}$ and $\{b_n\}$ are convergent

$$\therefore a_{n+1} = \frac{a_n + b_n}{2},$$
$$\implies \lim_{n \to \infty} a_n = \frac{\lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n}{2}$$
$$\implies \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

3. Let $x_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}, \forall n \in \mathbb{N}$ show that (x_n) is convergent.

Solution:
$$\forall n \ge 1,$$

$$x_{n+1} - x_n = \frac{1}{(n+1) + (n)} + \frac{1}{(n+1) + (n+1)} - \frac{1}{n+1}$$
$$= \frac{1}{2(2n+1)(n+1)} > 0$$

 $\therefore \{x_n\}$ is increasing

$$x_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$$

$$\leq \frac{1}{n+1} + \frac{1}{n+1} + \dots + \frac{1}{n+1}$$

$$= \frac{n}{n+1} < 1$$

 $\therefore \{x_n\}$ is bounded above

 $\implies \{x_n\}$ is convergent

Remarks: $x_1 = 1/2 \implies \lim_{n \to \infty} x_n \ge 1/2$ but $\lim_{n \to \infty} \frac{1}{n+i} = 0$ for all natural number i It means that we cannot calculate the limit terms by terms

4. Let (b_n) be a bounded sequence of non-negative numbers and r be any number such that $0 \le r < 1$

Define $s_n = b_1 r + b_2 r^2 + \dots + b_n r^n$

prove that s_n is convergent.

Solution: $\forall n \ge 1,$

 $s_{n+1} - s_n = b_{n+1}r^{n+1} \ge 0$

 $\implies \{s_n\}$ is increasing

 $\therefore \{b_n\}$ is bounded

 $\exists M \text{ such that } \forall n, b_n \leq M$

$$s_n \le Mr + Mr^2 + \dots + Mr^n$$
$$= Mr(\frac{1-r^n}{1-r})$$
$$< \frac{Mr}{1-r}$$

 $\therefore \{s_n\}$ is bounded above

 $\therefore \{s_n\}$ converges

If
$$x_n(x_n^2 - (2n + \frac{n+1}{n})x_n + 2(n+1)) > 0$$

Prove that (x_n) is convergent.

Solutions: We only need to prove boundedness

$$0 \le x_n (x_n^2 - (2n + \frac{n+1}{n}x_n + 2(n+1)) = x_n (x_n - \frac{n+1}{n})(x_n - 2n)$$

$$\implies 0 < x_n < \frac{n+1}{n} \text{ or } x_n > 2n$$

idea: the "speed" of increasing of 2n larger than that of \boldsymbol{x}_n

If $\exists n_0$ such that $x_{n_0} > 2n_0$

let m be the smallest integer bigger than $x_{n_0} - 2n_0$, then $2n_0 > x_{n_0} - m$

as
$$x_{n+1} - x_n < 1$$
, we have $x_{n_0+m} < x_{n_0} + m$

$$2(n_0 + m) > x_{n_0} - m + 2m = x_{n_0} + m > x_{n_0 + m}$$

$$\implies 0 < x_{n_0+m} < \frac{(n_0+m)+1}{n_0+m}$$

but $x_{n_0+m} > x_n > 2n_0 > \frac{(n_0+m)+1}{n_0+m}$ which lead to contradiction
 $\therefore \forall n, 0 < x_n < \frac{n+1}{n} < 2$

 $\therefore \{x_n\}$ converges