THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH 2055 Tutorial 4 (Oct 7) Ng Wing Kit

1. Write down the negations of the following statements.
(a) $\forall \epsilon>0, \exists N$ such that $\forall n>N,\left|x_{n}-x\right|<\epsilon$

Solution: $\exists \epsilon>0$, such that $\forall N_{0}, \exists n>N_{0},\left|x_{n}-x\right|>\epsilon$
(b) $\exists N$, such that $\forall n>N, \forall \epsilon>0,\left|x_{n}-x\right|<\epsilon$

Solution: $\forall N_{0}, \exists n>N_{0}, \exists \epsilon>0,\left|x_{n}-x\right|>\epsilon$
(c) $\forall M, \exists N$, such that $\forall n>N,\left|x_{n}-x\right|>M$

Solution: $\exists M, \forall N_{0}, \exists n>N_{0},\left|x_{n}-x\right|<M$
2. For a pair of positive numbers a and b , define sequences a_{n} and b_{n} respectively as

$$
\begin{array}{cl}
a_{1}=a, & b_{1}=b \\
a_{n+1}=\frac{a_{n}+b_{n}}{2} & b_{n+1}=\sqrt{a_{n} b_{n}}
\end{array}
$$

Prove that $a_{n} \geq a_{n+1} \geq b_{n+1} \geq b_{n}$ for $n \geq 2$, and they have the same limit.

Solution:
$\forall \alpha, \beta \in \mathbb{R}^{+}$,
$(\sqrt{\alpha}+\sqrt{\beta})^{2} \geq 0 \Longrightarrow(\alpha+\beta) / 2 \geq \sqrt{\alpha \beta}$
$\therefore \forall n \geq 2, a_{n} \geq b_{n}$
$b_{n+1}-b_{n}=\sqrt{a_{n} b_{n}}-b_{n}=\frac{b_{n}\left(a_{n}-b_{n}\right)}{\sqrt{a_{n} b_{n}}+b_{n}} \geq 0$
$a_{n}-a_{n+1}=a_{n}-\frac{a_{n}+b_{n}}{2}=\frac{a_{n}-b_{n}}{2} \geq 0$
$\therefore\left\{a_{n}\right\}_{n \geq 2}$ is decreasing and bounded below by b_{2} and $\left\{b_{n}\right\}_{n \geq 2}$ is increasing and bounded above by a_{2}
$\therefore\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent
$\because a_{n+1}=\frac{a_{n}+b_{n}}{2}$,
$\Longrightarrow \lim _{n \rightarrow \infty} a_{n}=\frac{\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}}{2}$
$\Longrightarrow \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$
3. Let $x_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\ldots \frac{1}{n+n}, \forall n \in \mathbb{N}$ show that $\left(x_{n}\right)$ is convergent.

Solution:
$\forall n \geq 1$,

$$
\begin{aligned}
x_{n+1}-x_{n} & =\frac{1}{(n+1)+(n)}+\frac{1}{(n+1)+(n+1)}-\frac{1}{n+1} \\
& =\frac{1}{2(2 n+1)(n+1)}>0
\end{aligned}
$$

$\therefore\left\{x_{n}\right\}$ is increasing

$$
\begin{aligned}
x_{n} & =\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+n} \\
& \leq \frac{1}{n+1}+\frac{1}{n+1}+\cdots+\frac{1}{n+1} \\
& =\frac{n}{n+1}<1
\end{aligned}
$$

$\therefore\left\{x_{n}\right\}$ is bounded above
$\Longrightarrow\left\{x_{n}\right\}$ is convergent

Remarks: $x_{1}=1 / 2 \Longrightarrow \lim _{n \rightarrow \infty} x_{n} \geq 1 / 2$
but $\lim _{n \rightarrow \infty} \frac{1}{n+i}=0$ for all natural number i
It means that we cannot calculate the limit terms by terms
4. Let $\left(b_{n}\right)$ be a bounded sequence of non-negative numbers and r be any number such that $0 \leq r<1$

Define $s_{n}=b_{1} r+b_{2} r^{2}+\cdots+b_{n} r^{n}$
prove that s_{n} is convergent.

Solution:
$\forall n \geq 1$,
$s_{n+1}-s_{n}=b_{n+1} r^{n+1} \geq 0$
$\Longrightarrow\left\{s_{n}\right\}$ is increasing
$\because\left\{b_{n}\right\}$ is bounded
$\exists M$ such that $\forall n, b_{n} \leq M$

$$
\begin{aligned}
s_{n} & \leq M r+M r^{2}+\cdots+M r^{n} \\
& =M r\left(\frac{1-r^{n}}{1-r}\right) \\
& <\frac{M r}{1-r}
\end{aligned}
$$

$\therefore\left\{s_{n}\right\}$ is bounded above
$\therefore\left\{s_{n}\right\}$ converges
5. Given that $\left(x_{n}\right)$ is increasing sequence, $x_{n+1}-x_{n}<1$, and $x_{1} \geq 0$

If $x_{n}\left(x_{n}{ }^{2}-\left(2 n+\frac{n+1}{n}\right) x_{n}+2(n+1)\right)>0$
Prove that $\left(x_{n}\right)$ is convergent.

Solutions:
We only need to prove boundedness
$0 \leq x_{n}\left(x_{n}{ }^{2}-\left(2 n+\frac{n+1}{n} x_{n}+2(n+1)\right)=x_{n}\left(x_{n}-\frac{n+1}{n}\right)\left(x_{n}-2 n\right)\right.$
$\Longrightarrow 0<x_{n}<\frac{n+1}{n}$ or $x_{n}>2 n$
idea: the "speed" of increasing of 2 n larger than that of x_{n}
If $\exists n_{0}$ such that $x_{n_{0}}>2 n_{0}$
let m be the smallest integer bigger than $x_{n_{0}}-2 n_{0}$, then $2 n_{0}>x_{n_{0}}-m$
as $x_{n+1}-x_{n}<1$, we have $x_{n_{0}+m}<x_{n_{0}}+m$
$2\left(n_{0}+m\right)>x_{n_{0}}-m+2 m=x_{n_{0}}+m>x_{n_{0}+m}$
$\Longrightarrow 0<x_{n_{0}+m}<\frac{\left(n_{0}+m\right)+1}{n_{0}+m}$
but $x_{n_{0}+m}>x_{n}>2 n_{0}>\frac{\left(n_{0}+m\right)+1}{n_{0}+m}$ which lead to contradiction
$\therefore \forall n, 0<x_{n}<\frac{n+1}{n}<2$
$\therefore\left\{x_{n}\right\}$ converges

